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INTRODUCTION 

General Introduction 

A study ofBacillus brevis by McNary, Brinton, and Carnahan ( 1 )  showed that it 
possesses an external, regularly arranged protein layer which could be seen on electron 
micrographs of shadowed or negatively stained intact cells. This so-called T-layer could 
be removed and then purified as described by Henry (2). Further experiments (2) showed 
that low pH treatment caused the layer t o  dissociate reversibly into smaller parts and that 
treatment of the intact layer with proteolytic enzymes (e.g., pronase) led to  the formation 
of tetragonally arranged cylindrical structures. SDS gel electrophoresis of planar and 
cylindrical T-layer indicated that the molecular weight of the major protein component 
passed from 140,000 t o  125,000 daltons, respectively. 

stained native and pronase-treated T-layers using both the well-known methods at' optical 
diffraction and filtration (3-9) and the digital computer Fourier transform (10) and fil- 
tration method. We had two aims: first to establish the two-dimensional structure and 
arrangement of the protomer in the tetragonal net (2) t o  the best available resolution, 
and second t o  make a qualitative comparison between the optical and digital methods 
using the cylindrical T-layer structure as an example. Until now the use of digital methods 
in the study of planar or flattened cylindrical lattices has been fairly limited (1 1). Com- 
puter reconstructions have been used extensively in the analysis of helical and spherical 
structures, however ( I  2, 13). 

found in the appendix where we also discuss the relation between the filtration method 
using Fourier transforms and Markham's method of linear superposition (14). 

In this paper we present the results of an analysis of electron micrographs of nLgatively 

Mathematical details and some remarks concerning filtration techniques can be 
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Optical and Computer Filtration 

The optical and computer methods for filtering Fourier transforms differ in two 
important respects. First of  all the mathematical quantity transformed in the two systems 
is different. In the optical system one transforms the transmissivity of the film, whereas 
in the computer one deals directly with its optical density.* This difference is important 
in principle because, to  a first approximation, the optical density of the micrograph 

(OD) is linearly related t o  the mass thickness of the specimen ( 1  5 ) .  Consequently a super- 
position of two plane layers will give rise t o  a micrograph whose optical density is, in this 
approximation, linearly related to  a sum of contributions from each of the layers. The 
transmissivity of the micrograph, however, is related to  the product of the contribution 
from the two layers. This fact is reflected in the Fourier transform obtained by the optical 
system where diffraction spots can sometimes be seen due to  the convolution of the 
periodic information from the two lattices (9). Provided these extra spots do not coincide 
with the principal maxima they d o  not cause any trouble in a practical filtration (6) be- 
cause the separation of the two layers can be achieved to a good approximation due to 
the dominance of the zero order. 

The second difference is the most important and concerns the fact that the digital 
transform is necessarily a discrete transform of a function sampled on a regular sampling 
lattice. The Fourier transform is also sampled, but on a lattice whose spacing is the recipro- 
cal of the overall window size. This means that a.wave in the real space picture whose 
spatial frequency does not correspond exactly t o  one of the transform sampling points 
cannot be represented by only one nonzero number in the sampled transform. If such a 
spatial frequency is necessary for the reconstruction it is not possible t o  construct a simple 
“mask” for the computer transform which will transmit this frequency alone. Consequently, 
in our work we manipulated the sampling grid in real space so that the spatial frequencies 
we wished to transmit through o u r  computer rnask lay as close as possible to Fourier space 
sampling points. In the case of the optical analogue transform all spatial frequencies up 
to  a certain limit can be sampled because the optical Fourier transform is continuous. Con- 
sequently, the quality of filtering procedure mainly depends on the skill of the person 
constructing the filter masks. 

puter even when the important spatial frequencies do not lie exactly on the sample points, 
by simply constructing a mask which transmits all frequencies close to  the one of interest. 
This leads to  an improvement in the visible structure and is helpful as a first step in the 
analysis when searching for the alignment and scaling of the lattice vectors, but the signal- 
to-noise ratio of the overall picture is, however, smaller than that obtained with the other 
method because of the extra points which have been transmitted through the computer 
filter mask. This is clearly not the optimum information processing situation. 

Notwithstanding what has been said, useful results may be obtained from the com- 

MATERIALS AND METHODS 

Preparation of T-Layer Samples 

Removal and subsequent purification of T-layer sheets from intact B. brevis cells 

*in fact, due to  the finite size of the densitometer spot, the quantity measured is the integral of the 
transparency over the film area illuminated by the densitometer spot. 
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was achieved by following the method described bv Henry ( 2 ) .  Intact cells suspended in 
sterile water were broken by sonication and then centrifuged for 5 min at 1085 g. The super- 
natant which contained the cell wall fragments was then washed 5 times by centrifugation 
(1 2,000 g for 10 min) and the final pellet was resuspended in sterile water to give a con- 
centration of 0.1 gm cell wall/ml H2 0. To detach the T-layers from the cell wall fragments, 
an equal volume of 2 M guanidine hydrochloride was added and the mixture was stirred 
gently for 2.5 hr. 

This solution was then layered onto a sucrose step gradient, consisting of  I 5  ml of 
15% sucrose buffered with tris HC 1 ,  pH 7.5, layered over 15 ml of 40% sucrose, and 
centrifuged for 30 min at 900 g. The bands containing the T-layer fractions were centri- 
fuged for 30 min at  23,000 g and the pellets resuspended in 0.1 M KCI.  By subsequently 
adding sodium pyrophosphate the pH was lowered to  2.5 in order to dissociate the T-layers. 
These low pH fractions were centrifuged for 30 min at 23,500 g and the supernatants were 
neutralized up to  pH 6.5 t o  give reassembled planar T-layer sheets. To get the cylindrical 
modification, the T-layer sheets were treated with 0.5% pronase for 60 min (B grade, 
Calbiochemical). Both samples were then preserved by adding 1% sodium azide and were 
stored in the cold. 

Electron Microscopy 

Samples of  T-layers intended for examination in the electron microscope were first 
fixed with 1% formaldehyde and then adsorbed to carbon supporting films which were 
rendered hydrophilic by glow discharge in air a t  low pressure and finally stained with 2% 
sodium phosphotungstate a t  pH 7. These preparations were examined in minimum beam 
exposure, using the beam rocking method of Williams and Fisher (1 6), in a Philips E.M. 301 
at  magnifications in the range of 35,000 t o  40,000. The vacuum conditions of  the micro- 
scope were such that the contamination rate at crossover was a few angstroms per minute. 
Micrographs were recorded on 70mm Kodalith LR 2572 film and developed in Kodak DK 
60a developer. Calibration of the microscope magnification was performed by measuring 
grating replicas of known spacings (607 Polaron, carbon grating replica, crossed lines, 
54,800 lines/inch) which were checked in an optical microscope. Care was also taken to  
avoid errors due to  lens hysteresis and the variable height of the specimen plane in the 
microscope; the latter was checked by monitoring the objective lens current. As a result 
the relative magnifications between successive pictures were estimated to be stable to 
within 2 1%. The absolute accuracy of the magnification of the microscope was estimated 
t o  be of the order of 2 3%. 

3.4 a (line resolution) on graphite. Taking this resolution check into account together 
with the instrument and photographic film properties, we were able t o  record micrographs 
with a resolution of at least 10 a at a magnification of 35,000. 

Micrographs of T-layers which produced diffraction patterns with strong high-order 
spots and which showed relatively fine detail and a large gray level range on direct inspec- 
tion were selected for subsequent processing. 

The instrumental resolution was checked and was always found to  be better than 

Processing Micrograph Data 

The optical method. Optical diffraction patterns and reconstructions were done 
on a 3-times folded diffractometer designed by Boy de la Tour, Bron, and Kellenberger 
(Fig. I ) .  The light source was a 1 mW He- Ne laser (Spectra Physics, model 132) and the 
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transformation lens had a focal length of 1 185 mm which resulted in a diffractometer 
constant of 

hc = A  o f = 0 . 7 5  

The micrograph was illuminated with a parallel light bundle of almost equal intensity 

As reconstruction lens a high-quality objective (Schneider Repro-Claron 1 :9) with a 
over a radius of about 1 cm. 

focal length of 610 mm was used. It was positioned behind the filter plane at a distance 
such that a 1 : 1 magnification of the filtered pictures was obtained. 

In order to  avoid damage to the original micrographs contact prints were used. 
These were recorded on  Rototype FRK film (Typon) and developed so as to  obtain a 
gamma of 1 inside the gray level range of the micrographs. This was checked by reproduc- 
ing a calibrated step wedge under the same conditions and measuring the reproduced step 
wedge on a Joyce Loebl Chromoscan. Diffraction patterns and reconstructions were re- 
corded on llford FP4 film. 

I I 

1 :  
2 :  
3 :  
4 :  
5 :  

6 :  

7 :  
8 :  
9 :  

10 : 

11 : 
12 : 
13 : 

14 : 

He-Ne-liqht source 
Lens, f = 5 0  nun, 0 = 16 mm ) 
pinhole, 0 = 100 um ) beam expanding system 

Plane mirror 
Lens, f = 1185 mm, 0 = 71 mm; d(3,5) = 1185 nun; with 
concentric circular aperture of $3 = 20 mm 
Variable rectancular aperture for framing the micro- 
graphs 
Object plane, stage for mounting the micrographs 
Lens, f = 1185 mm, $3 = 71 nun 
Plane mirror 
Diffraction plane, stage for recording diffraction 
patterns or mounting filter masks 
Reconstruction lens, f = 610 mm, $3 = 68 mm 
plane mirror 
Reconstruction plane, stage for recording recon- 
structions 
Microscope for observing diffraction patterns or 
rcconstructions, lox magnification 

Fig. 1.  Design of the folded diffractornetel 
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Fourier transforms and reconstructions were made of  square ( 1  cm X 1 cm) windows 
from the best preserved parts of  the micrographs so that an area of 400 to 500 unit cells 
was obtained when a standard electron microscope magnification of  35,000 to 37.000 
had been used. 

The filtration masks were made following the procedure described by Leonard et 
al. (8) with the exception that 0.1 mm copper foils coated with Kodak thin film resist 
(KTFR) were used instead of KAR3 coated sheet brass. Errors in mask dimensions and 
hole positions were kept to  less than 1%. The filter holes were always circular and had a 
diameter of about l / S  of  the reciprocal lattice constant so that we were averaging over 
about 100 unit cells (see first part, Appendix). As a result the reconstructed unit cells 
were not exactly identical over the processed window. 

Twofold rotational averaging of the reconstructions was performed by superimposing 
two identical transparent film copies, which were rotated 180" with respect t o  one another. 
The optical density of these films was only half the optical density of the ordinary recon- 
structions so that the superpositions had the same final optical density. The reconstructions 
from the diffractometer were enlarged in a two-step process t o  a final magnification of 
about 2,500,000. 

The computer method. Micrographs of  T-layers were enlarged so that the lattice 
constant of the T-layer as seen in the enlargement was 1.2 mm,  and were recorded on 
Rototype FRK film (Typon). This film was cut so that it could be scanned parallel t o  one 
lattice vector by the densitometer (Optronics Photoscan model P- 1000). Measurements 
of the optical density of the film were collected from a selected area of the film on a 50  
pm raster, written directly onto magnetic tape and transferred to an IBM 370/155 com- 
puter. These data were then preprocessed to recover the original micrograph optical 
density, using data obtained from a calibrated step wedge enlarged under the same con- 
ditions as the micrograph and measured on a Joyce Loebl Chromoscan. 

This was then reverse transformed using an area of 3 X 3 transform sample points around 
each of the expected reciprocal lattice points. The result was a less noisy picture on which 
the lattice parameters could be measured directly. The sampled data were then transferred 
using a bilinear interpolation scheme (see second part, Appendix) from the original sam- 
pling grid t o  a new grid chosen so that the sampling raster vectors were aligned with and 
scaled t o  the lattice vectors previously determined giving exactly 24  X 24 sample points 
per unit cell. In order to  check the choice of vectors which had been made, computational 
searches were done varying skew angles and lattice constants to find the parameters which 
maximized the total image power in the reciprocal lattice. Such a procedure was very ex- 
pensive in computer time and generally confirmed the results obtained by direct measure- 
ment on  the picture. It was found that the quality of the final reconstructions and the 
symmetry residuals also provided a sensitive check on the choice of vectors. 

After the transfer of the data to the new grid a region of exactly I0 X 10 unit cells 
(240 X 240 matrix) was selected and digitally transformed and then reconstructed using 
only those transform points on the reciprocal lattice of the T-layer, a procedure equivalent 
to doing a Markham linear superposition with a computer (see first part, Appendix). 

Fourfold rotational symmetrizations were done by fourfold averaging of the Fourier 
transforms and a residual was calculated which gave the percentage of the total image 
power which had been lost in the averaging step. This residual was not a sensitive test of 
the degree of symmetry of high-frequency terms because of their relatively small contri- 

A region of  roughly 10 X 10 unit cells was selected and digitally Fourier transformed. 
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bution t o  the total image power but it quickly revealed any asymmetry in the image in- 
formation or incorrect choice of symmetry center. 

Pictorial output was obtained on a line printer using the method described by 
MacLeod (1 7). Upper and lower cutoff values were chosen to  give the best correspondence 
with the optical transform pictures. 

RESULTS 

Statistical Analysis of T-Layer Lattice Parameters 

We established the lattice parameters of both the planar and cylindrical forms by 
statistical analyses of measurements from 50 micrographs of preparations of mixtures of 
the two forms. At least one of  each of  the two forms was measured on  every micrograph 
used. The results are tabulated and plotted in Table I and Fig. 2 ,  respectively. 

g, and gZ are the lattice vectors, gl and g, the lattice constants of  the cylindrical 
form. Their arrangement (including the handedness, which was determined and found 
to  be the same on 15 platinum shadowed cylinders) is shown in Fig. 2a. In Fig. 2b we 
have plotted g2 against gl  to  illustrate the fact hat g1 is consistently shorter than g2 (all 
the points lie to the left of the line g, = gz). In the samples o f  the planar form we could 
not distinguish between g, and g2 and so we defined a mean lattice constant g as: g = 
(gl + g,) /2. In order to compare planar and cylindrical forms we used this definition for 
both cases, as shown in Fig. 2c. 

the two lattice vectors from 90") of both forms is shown in Fig. 2d. In the case of the 
cylinders, with a well-defined handedness, the sign of the skew angle is clearly defined. In 
the planar case it is not possible to  tell the difference between positive and negative skews 
and consequently we assume a mean value of  0" for the planar distribution. 

pitch angle is defined, as shown in Fig. 2a. 

meters calculated from the data of the histogrammed distributions. It should be noted 
that the standard deviations of the lattice constants are relative deviations; that is, they 
are the result of a systematic series of measurements under reproducible conditions and 
consequently are valid for a comparison. The absolute values, however, were estimated to  
be reliable only within * 5%, taking into account the uncertainties in the microscope 
magnification. 

The distribution of the skew angles (skew angle = deviation of the angle b-t ween 

In Fig. 2e the distribution of the pitch angle of the cylinders is drawn, where the 

Table I summarizes the mean values and the standard deviations of the lattice para- 

TABLE I. 

Planar Cylinder 

- 130.94 r 0.71 A 
- 131.60 I 0.71 A 

g, 
g2 
g 131.15 r 1.15 A 
Pitch - 39.0" C 0.5" 
Skew 0" f 0.5" (?) 1.0" f 0.5" 

131.25 i .78 A - 
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Reconstruction of the Cylinder Preparations Using 3 to 5 On-Axis Diffraction Orders 
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Some consequences of the computer processing. In the Materials and Methods 
section we have discussed in detail the processing steps involved in obtaining all the re- 
constructions given in this paper. The computer processing does, however, deserve more 
comment as the consequences of the transfer of data from one sampling grid t o  another 
are not immediately obvious. We pointed out in the Optical and Computer Filtration section 
of the Introduction that a discrete Fourier transform cannot be efficiently filtered if the 
spatial frequencies one wishes to  preserve are not sampled on the sampling grid. In order 

Fig  2a 

cylinder axis 

Fig 26 Fig 2e 

Fig. 2. Statistical analysis of' T-layer lattice parameters. (a) Cylindrical lattice parameters. (2) Dis- 
tribution of cylinder lattice vector lengths. ( c )  Histogram of cylinder and sheet lattice constants. 
(d) Histogram of cylinder and sheet lattice skew angles. ( e )  Histogram of cylinder pitch angles. 
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to  achieve this coincidence between the spatial frequencies and the sample grid the data 
were transferred using a bilinear interpolation scheme t o  a skewed sample grid whose 
lattice lines were parallel to the T-layer lattice (see Materials and Methods and Appendix, 
second part). This procedure is perfectly satisfactory from a mathematical point of  view 
provided that the new coordinate system is always regarded as a skew system. It is only 
possible to regard this new system as the “correct” system, in the sense that it has re- 
moved a distortion in the original lattice, if the distortion occurred isotropically over 
the whole unit cell. In the case of  a distorted lattice, where the protein subunits of the 
unit cell had moved in relation to each other while remaining relatively undistorted them- 
selves, the change from one coordinate system to another would introduce a second-order 
distortion of the subunits as well as “remove” the skew. 

by the coordinate transformation, could be ignorned because they could have contributed 
errors in mislocation of mass of no more than 1 a over the width of a single subunit. Be- 
cause this skew was so small we could treat the coordinate transformation as a correction 
and rotationally average the unit cells by fourfold symmetrizing their Fourier transforms. 
This step would almost certainly have been erroneous if the skew angle had been large. 

In general one would expect that the minimum energy configuration of a P4 lattice 
which had been bent into a closed cylinder could easily involve a small skew in the 
natural state. One could argue that in such cases the skew angle should be reintroduced 
into the reconstruction. In our case, however, the angle was too small for this t o  be 
worthwhile and in any case the true pitch of the reassembled cylinders in solution could 
not be found. 

In our case, where skew angles were always less than 2”, shearing artifacts introduced 

Reconstructions. Figure 3a shows the initial micrograph; the area used for recon- 
struction is marked with “A” (the marked areas contain the array of 10 X I0 unit cells 
we used for the computer reconstructions: for the optical reconstructions we used an 
area of  about 70 X 20 unit cells which included the computer-processed area). The 
diffraction pattern of this area is presented in Fig. 3b,  the left-hand side being the op- 
tical diffraction pattern and the right-hand side being the computer-generated one. 
A comparison between these two is interesting because in the computer diffraction pattern 
only the diffraction spots for one layer can be seen clearly: the others are, in general, blurred 
into the background noise because the sampling grid was not aligned with this lattice 
(see lntroduct ion). 

posed layers seen in areas of fig. 3a: Fig. 4c shows a five order reconstruction of the 
single layer seen in area B. From the handedness of the cylinders, determined on platinum- 
shadowed samples (see above), we concluded that Figs. 4a, c are reconstructions of the 
upper layer of the flattened cylinder. All the reconstructions shown in Fig. 4 have been 
rotationally symmetrized, twofold in the optical case and fourfold in the computer. 

In order t o  study the build-up of information, we made a series of reconstructions 
using successively 3 , 4 ,  and 5 on-axis orders in the filtrations (on-axis means parallel to  the 
reciprocal lattice vectors which are parallel to  the sampling grid in Fourier space). An ex- 
ample of  such a series is shown in Fig. 5a, b. c using data for the upper layer of the area A in 
Fig. 3a. I t  can be seen from these reconstructions that the largest change in the structure 
comes about when the fourth order is included and the structure finally becomes clear. 
The inclusion of the fifth order makes little or no difference to  the results. All pictures in 
Fig. 5 are unsymmetrized and so a comparison of  Fig. 4a and 5c illustrates the effect of 
symmetrization. (The “graininess” seen in the optical reconstructions in Fig. 5 is averaged 

Figures 4a, b show 7 X 2 unit cells of five-order reconstructions of the two super- 
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away by the superpositions needed to  produce those in Fig. 4.) We calculated on the com- 
puter that less than 5% of the image power was lost on fourfold symmetrization. In Fig. 6 
the optical reconstruction of another cylindrical T-layer is presented. Fig. 6a shows the 
unprocessed micrograph and Fig. 6b shows an enlargement of the area marked “A” in 
Fig. 6a to  the same scale as the reconstruction of 10 X 10 unit cells seen in Fig. 6c. 

To obtain an estimate of the noise content in the original micrographs a recon- 
structed area was subtracted in the computer from the original by using a “negative” 
filtration; that is, all the information lying on  the sample points of the reciprocal lattice of 
the T-layer (including the “periodic” noise) was filtered out and only the “nonperiodic” 
noise was reconstructed. The standard deviation from the mean of this noise was then de- 
termined t o  be roughly f 20% of the total variation in the optical density due t o  the re- 
constructed structure over one unit cell. 

1:ig. 3. (a) Micrograph otT-Layer  cylinder. (b) Diffraction pattern of area “A” on micrograph. Left- 
hand side: Optical; right-hand side: computer. 
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Fig. 4. Symmetrized reconstructions of T-layer cylinder. (a) Upper layer from area “A.” (b) Lower 
layer from area “A.” ( c )  Single layer from area “B.” ( 1 )  Left-hand side: optical, (2)  right-hand 
side: computer. 

Although the optical and computer reconstructions of the different regions of the 
micrograph shown in Fig. 3a have the same general structure, there are differences in their 
detailed structure as can be seen from the projection plots” of the optical density of the 
T-layers. These at-e presented in Fig. 7a,  b. The data used to produce these plots are 
exactly the same as are used in Fig. 4aZ and 4cZ. The arrows point out a small difference 
between the relative mass-thicknesses of  the two reconstructions. This can possibly be 
ascribed to a greater flattening of the single layer region of the specimen. 

* A  projection plot has nothing to do with a three-dimensional view of the structure; the z-axis repre- 
sents the optical density of the reconstruction which is in a first approximation linearly related to the 
integrated mass distribution (mass thickness) along this direction. These plots should not be interpreted 
a s  a surface relief of thc laycrs. 
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I:ig. 5. Unsymmetrized reconstructions of T-layer cylinder of upper layer in Fig. 23 using an in- 
creasing number of' diffraction orders. (a) 3 orders, (b) 4 orders, (c) 5 orders; ( I )  left-hand side: 
optical; (2) right-hand side: computer. 

Reconstruction of the Planar Preparations Using 3 and 4 On-Axis Diffraction Orders 
and a Comparison with the Corresponding Reconstructions of the Cylindrical Form 

Micrographs of the planar form prepared in the same way as the cylinders never 
showed more than 4 on-axis orders in the diffraction patterns (we checked about 50 
micrographs). Furthermore, the general appearance of the micrographs seemed t o  confirm 
a general lack of fine details. Figure 8a shows a typical micrograph of a planar preparation. 
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The area used for reconstruction is marked with “A” and its optical diffraction pattern is 
Fig. Xb. Third- and fourth-order reconstructions are presented in Fig. 9a and b ,  column 
1 .  In column 2 the corresponding reconstructions of the cylindrical form are shown for 
comparison. I t  can be seen that the reconstructions are very similar for both forms; in the 
cylindrical case, however, the “contours” are much sharper, especially the one of the 
double arms and of the “minor” tetramer (i.e., the pairs of 4 “globules” which are 
surrounded by the double arms). The same small differences are visible in the projection 
plots of 4-order reconstructions of both forms processed under identical conditions; 
these are shown in Fig. 7a, b ,  and c. 

Fig. 6 .  (a) Micrograph of T-layer cylinder. (b) Enlargement of area “A” (10 X 10 unit cells). (c) Op- 
tical reconstruction of the upper layer of area “A”; same magnification as in (b). 
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As was shown above (Table I and Fig. k ) .  the mean lattice constant g is not 
significantly different between the cylindrical and planar layers. However, in order to 
establish that the small differences in the reconstructions are significant and not arbitrary 
we did several controls: all samples which were used f o r  processing were treated under 
the same conditions (stain, microscopic, and photographic processes). In order to exclude 
the possibility that the apparently higher information content in the cylindrical samples 
was not due to its double layer structure, we did two checks: first we processed single 
layer parts of cylinders (see Fig. 3a, area B and the reconstructions in Fig. 4c and 7b)  and, 
second, we processed double layer parts of planar forms (see Fig. 8a,  area B) by  filtering 
away one of the two randomly superimposed plane layers: the results were essentially 
identical to  our previous findings. 

Some Considerations Concerning the Curvature of the Cylinders 

I t  is clear from the work of Henry (2) that the planar and cylindrical forms of the 
T-layer are self-assembly systems. at least in vitro. In such systems we expect the 

Fig. 7 .  Projection plot of reconstructions. (a) Data from Fig. 4a2. (b) Data from Fig. 4c2 ( c )  Data 
from Fig. 8a (reconstruction). These should not be interpreted as a surface relief of the layers. 
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morphology and bonding properties of the protomer to completely define the shape of 
the assembled structure. In our case it is interesting to  calculate an order of magnitude 
for the distortion of the protomer in a planar T-layer lattice when this lattice is bent into 
a cylinder. (This is the same distortion one would expect when a cylinder was flattened 
on the microscope grid.) This distortion might then give a hint as t o  how the orientations 
of the bonding areas on the planar T-layer protomers are altered by the pronase action 
and the extent to  which the interprotomer positions and interactions depart from strict 
equivalence. (Protomers in a cylindrical P4 net must occupy only quasi-equivalent positions.) 

In order to  d o  this calculation we measured the flattened widths of 50 negatively 
stained cylinders and obtained 7,920 ? 120 8. Assuming that these were completely 

Fig. 8 .  (a) Micrograph of planar T-layer. (b) Optical diffraction pattern area “A” on Fig. 8a. 
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flattened (as clearly indicated by the stain distribution) this leads t o  a value of  2521 * 
38 A for the cylinder radius. Now the length of the radii of curvature along each of thc 
lattice vectors g1 and gZ can be obtained using the formula (18) 

p = R/cos2p 

where p is the pitch angle of the lattice line considered. From this we get 

p 1  = 4 2 0 0 A a l o n g g 1  

and 
p2 = 6 6 0 0 A a l o n g g 2  

From this we can calculate that in order t o  bend a plane layer into a cylinder each sub. 
unit must be deflected out-of-plane by distances of 

s, = 2.1 A 

s2 = 1.3 A 
2nd 

with respect t o  its neighbors along the g1 and g2 lattice lines, respectively. 

easily be wrong by a factor of 2) the difference in linear extent between the top  and the 
bottom of the unit cell in the cylinder would be 

If we assume that the protein layer has a thickness of 50 A (a figure which could 

and 

6g2 = 1.0'4 

along lattice lines parallel t o  g, and g2 respectively. 

These results clearly show that the T-layer protomers occupy quasi-equivalent posi- 
tions in the cylindrical P4 lattice because each of the four are distorted in a different way. 
The distortions themselves are very small, less than 2% of the lattice constant, and, for 
comparison, an order of magnitude smaller than the corresponding deformations in the 
case of the P6 surface crystal of T4 polyheads (1 9). In fact they are so small that they 
are well below the theoretical resolution limit of our Philips EM 301 microscope. 

DISCUSSION AND CONCLUSIONS 

Interpretation of the Structurally Significant Results 

The statistical analysis and the check for fourfold symmetry have clearly shown that 
both the planar and cylindrical T-layer lattices are tetragonal with P4 symmetry (calcu- 
lated deviations from fourfold symmetry < 5% for both forms). The lattice parameters 
(lattice constants and angle between lattice vectors) of the two forms are identical to  
better than 1%. 

For both forms of T-layer, SDS gel electrophoresis demonstrated that only one pro- 
tein is involved (2).  The amount of the one or two very faint high molecular weight bands 
( I  00,000 daltons) which are always present preclude their being part of the protomer.* 

*Further work on  the electron microscope in dark field has indicated that the T-layer sheets may have 
a double layer structure, the second layer being very thin and having a much finer structure than the 
one studied in this paper. Work is continuing to definitively confirm the existence of this second layer 
and to  elucidate its relationahip with the coarser T-layer structure. 
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From the reconstructed distribution of the negative stain (see reconstructions) we 
have then to  conclude that this protein has a very complex mass distribution. In Fig. 10a 
we show a two-dimensional drawing which can be extracted from the reconstructions com- 
pared with a typical optical reconstruction picture, Fig. lob .  It should be noted that our 
reconstructions d o  not allow us to decide about the precise manner of dividing the tetramer 
into four identical parts so as to  get the outline of a single protomer. Figure 10a shows 
one possible division by way of an example; but from the point of view of our data it is 
entirely arbitrary. 

From the reconstruction we have to conclude that despite the different molecular 
weights of the two forms (140,000 * 5000 daltons for the planar and 125,000 5 5000 
daltons for the cylindrical form) the general characteristics of their patterns are very 
similar (see Fig. 9). However, when we compare the projection plots (see Fig. 7) or the 
digital outputs of  the optical density of reconstructed pictures of the two forms we can 
clearly see that there are significant differences in the relative ni;1ss thicknesses of the 
different parts. In the planar case the contrast between part A and part B (for nomen- 
clature see Fig. 10) is definitely larger than the corresponding one in the cylindrical case. 
This is also visible in the optical reconstructions shown in Fig. 9b. The same is valid for 
the contrast between part B and part C. If we exclude the possibility of an unknown 

Fig. 9. Comparison of' 3- and 4-order reconstructions of planar and cylindrical forms of T-layer. 
(a) 3 orders, (b)  4 orders. ( 1 )  Planar; (2) Cylindrical. 
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specific staining artifact this would mean that the pronase digests some matter from parts 
A and B in the direction perpendicular t o  the lattice plane. This would lead t o  a relative 
enhancement of  the “grooves” along the double arm axes of the tetramer in the cylindri- 
cal preparations and provide a simple explanation of the structural differences we actually 
observe. This is interesting as the pronase treatment does not significantly alter the 
lattice parameters. 

In the Results section (Fig. 5) we have studied the build-up of information using 
successively 3,4, and 5 on-axis orders for the reconstructions of the cylindrical form. 
From this it becomes clear that all significant periodic information is already included 
in the 4-order reconstructions and that the inclusion of the fifth order contributes only 
toward minor differences, the significance of which is not obvious. So we have to con- 
clude that the structurally significant information that can be extracted from the micro- 
graphs reaches approximately 25 A (including the off-axis orders using a 4 on-axis order 
square filter). Roughly the same is true for the planar form except that in this case the 
limit seems to  be at  30 8.* 

*Measurements of the autocorrelation diameters of the nonperiodic noise in the pictures of the 
cylindrical and planar layers gave values of roughly 25 and 30 A, respectively. It is tempting, therefore, 
to use the width at half height of the autocorrelation function of the noise as a measure of the effective 
Fourier cutoff of the periodic information. However, no theoretical justification for this is possible 
independent of a model for the staining process. 

~ i ~ .  10. (a) Drawing of T-layer: the division into protomers is arbitrary.  (b)  Optical reconstruction. 



5 1 5  T-Layer Structure 

Resolution checks on the microscope resolving power (see Materials and Methods) 
indicate that the microscope itself was not responsible for the limitation of our significant 
information to 25 to 30 8. It seems reasonable therefore to conclude that these limitations 
arise within the specimen. The structure and distribution of the negative stain, the de- 
struction and degradation of the biological material and the stain by the electron beam, 
and statistical and systematic deformations of the biological material during preparation 
limit the amount of information which can be obtained about the specimen from an 
electron micrograph. 

From this we conclude that micrographs of conventionally negatively stained 
biological specimens do not seem to support a model for the staining process which 
pictures the stain distribution as possibly damaged but intrinsically smooth down to a few 
angstroms. Rather it seems that the stain is discontinuous below the 25 a level and, in all 
but a few special cases, unable to provide contrast to structures smaller than this. Clearly, 
a great deal of work is needed to study the staining process and the relation between 
specimen structure and contrast. 

Comparison Between Optical and Computer Reconstructions 

From our reconstructions it became clear that there IS little difference between the 
output of the optical system and that of the computer. It hould be emphasized, how- 
ever, that the computer output we have used for this study (line printer output) has obvious 
drawbacks as it represents the reconstructed gray level scale very poorly compared with 
the projection plots or digital output. The output possibilities we presently have (apart 
from the digital output) could not allow us to show and emphasize any greater versatility 
or accuracy of the computer in comparison with the optical system. 

It is important to realize that from a general point of view the aim of the optical 
and the computer systems is to process information in the micrograph about the struc- 
ture of the object imaged in the microscope. Systems should be judged as to whether 
inefficiencies in information transfer, artifacts, and noise are likely to lead to an incorrect 
interpretation of the processed data as to the structure of the specimen. It is not clear 
from our work whether or not computer results would be significantly better than the 
optical results in this respect even with an optimal output system. The flexibility of the 
computer was, however, a considerable help in solving a number of ancillary problems 
(such as the search for symmetries, correction of lattice distortions, etc.) and fully justified 
its use from this point of view. 

and flexibility of computer processing is essential in Some particularly difficult situations. 
Our work does show, however, that careful and systematic use of an optical diffracto- 
meter can provide reconstructions of high quality which are not likely to be improved 
by computer reconstruction in most cases. 

It is clear from the work of Amos and Mug (1 1)  and Finch (20) that the precision 
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APPEND I X 
P. R. Smith and U. Aebi 

INTRODUCTION 

The purpose of this appendix is to discuss in more detail some of the analyses in 
this paper. Most of these are mathematical and would therefore be out of place in the 
body of the work, but they are important for a clear understanding of the methods. Most 
of them in addition have not been published, at least not in a biologically oriented journal. 

The appendix is in two parts: the first part discusses the Fourier transform filtering 
problem, shows how averaging is done in the optical and computer cases, and points out 
in detail how the two operations differ. The second part presents a discussion of the bi- 
linear interpolation used extensively in our analysis. 

FILTERING CONTINUOUS AND DISCRETE FOURIER TRANSFORMS 

The functional form of the ideal image is as follows: 
g(x) = h(x )  Do() * m  (41 

where 
1 (x) is an infinite periodic array of delta functions; m (x) is a function which 

describes the motif, zero outside the unit cell of 1 (x); h (x) is a function which defines 
the overall size of the structure, in our case, a square or a circular area enclosing several 
periods of I (x); and the asterisk (*) denotes the convolution operation, a description of 
which can be found in Goodman (22) together with the convolution theorem of which we 
will make extensive use of below. 

The Fourier transform of g (x), G (k), has the following form (a capital letter will be used 
to denote the Fourier transform of the real space function written with a corresponding 
small letter): 

F.T.: g(x) - G(k)  

G(k) = H(k) * [L(k) 0 M(k) ]  

where L (k) is an infinite array 0.f delta functions identical to the reciprocal lattice of 1 (x); 
M (k) is the Fourier transform of the motif m(x); and H (k) is the Fourier transform of 
the window h (x), in our case a double sinc function or an Airy function (22). 

The basic form of the transform is an array of delta functions L (k) modulated by 
the transform of the motif. The convolution operation then replaces each delta function 
with the transform H (k). 

very narrow. Consequently G (k) is only large in small regions around the lattice points 
of L (k). 

can, however, write the measured data as a sum of a noise component n (x) and an ideal 
(unknown) structure g (x): 

In practica! cases h (x) is made as large spatially as possible and H (k) is consequently 

In practice the experimental data g’ (x) will not have the ideal form just defined. We 
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The aim is, therefore, to have a filtering procedure which transmits an optimal amount of 
information about g (x) and eliminates as much as possible of the noise n ( X I .  

whereas G (k) has its contributions concentrated around the lattice points of L (k). Con- 
sequently, if we construct a simple filter, S (k), such that 

The transform of n ( X I ,  N (k), has, in general, a broad spectrum of spatial frequencies 

I , IG(k) l  >> IN(k)l 
0, elsewhere, S(k) = 

we will transmit information about g (x) in preference to that about n (x). The operation 
can be summarized as follows. 
Filtering Procedure 

g’(x) = go()  + n 04 
Fourier transform: ;(x) -G’(k) = G(k) + N(k) 

Filtering: G’(k) -Gk(k) = S(k) 0 G’(k) 

Fourier transform-’ : $.(k) --+ g’,(x) = s (x) * g‘ (x) 

= S ( X )  * g(x) + s(x) * n(x)  
(See aiso reference 2 1 .) 

In the optical realization of the filtering operation S (k) has a fixed form, usually 
S(k) = B(k) [W(k) * L(k)] 

where L (k) is the reciprocal lattice of 1 (x) and is an infinite array; W (k) is the filter hole 
function (a square or a circle); and B (k) is the band limiting function and is identical to 
the overall shape of the filter. Because the Fourier transforms with which we deal are 
essentially zero outside a region which is still inside our filter, we will take B (k) to be 
equal to 1 for all k; this is usually a good approximation. With this approximation S (k) 
can be written as follows: S (k) = W (k) * L (k). It’s Fourier transform, s(x) = w (x) . 1 (XI, 
is therefore an infinite periodic array of delta functions which are weighted by w (x). 
Consequently 

g;(x) = [W’(X) 1(x)] * g’(x) 

is built up by superposing the image g’ (x) onto itself, each subsequent contribution being 
weighted by the factor w (xi) where xi is a vector to one of the lattice points 1 (x). This 
operation is equivalent to a Markham superposition but with weights different from 1. The 
extent of the effective averaging is governed by the spatial extent of W (k); the smaller it 
is the larger the region of w (x) where it is effectively 1 ; for very large x, w (x)  = 0. 

In the limiting case where W (k) = 6 (k), w (x) = 1 everywhere and the filtering is identical 
to the Markham superposition operation. 

As a result of the filtering we may write 

gk (‘1 = gF (’1 + “F (’1 
where 

gF (‘1 = (‘1 * g (x) 

nF (x) = s (x) * n (x) 

gF (x) is now a function of the form 

gF (x) = s v  (x, u) 0 m (u) - du 
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where in general O0 

v (x, u) = 

- + +  [ C w ( [ p + m ] s , +  [ q + n ] t 2 + u - x ) . h ( u + m ~ , t n d 2 ) ]  (utmcr + n a 2  )I 
m,n  - + +  with (11 (Y are the lattice vectors of I (x) and p, q ,  m,  and n are integers. In our case this 

simplifies to  give 
N’ 00 

v (x, u) = v(x  - u) = C 6 ( p 2 : , + q z 2  + u  ~ x). z w ( [ p + m ) z , +  [ q + n ] s 2  t u - x) 
e q m,n 

where N’ is one less than the multiple of  the lattice constant which is equal to  the length 
of  the side of the square, h (x). With this simplification the integral defining g F  (x) is 
clearly a convolution integral. 

“F  (x) is stdl a “noise” function but its power is considerably reduced because all 
nonperiodic contributions to  it have been eliminated. Periodic noise or noise correlated 
with the structure (e.g., the systematic collapse of  some regions due to the stain) will not 
be removed by this filter. 

Computer filtration differs from the optical analogue transform principally in that 
the transform is discrete. In fact what is calculated is the transform of the function 

where q(x) is an infinite array of delta functions which constitutes the sampling grid of 
the function we wish t o  transform, (if one is using some computer system only a finite 
amount of data can be processed and so some sampling is necessary), and y (x) is an 
infinite array of delta functions whose periodicity is given by the width of the nonzero 
region of  g‘ (x). The periodicity of q is chosen so that a transform of the function above 
is simply 

The factor Y (k) is the Fourier space sampling raster and it comes from the periodic 
continuation of the real space function. 

Q(k) * [Y(k) G‘ (k)l 

G‘ (k) is the original function which we wished t o  study but now we have an 
additional convolution with Q (k), an array of  delta functions coming from the sampling 
grid. This has the effect of mixing frequencies separated by multiples of the lattice 
constant of  Q (k), a process called aliasing (23). As the real space sampling raster gets 
finer the mixing takes place over longer distances in Fourier space and in general is taken 
t o  be negligible when the real space sampling distance is less than 1 /3- 1 /4 of the wave- 
length of the highest significant spatial frequency (23). 

fore, that the discrete transform values are contaminated by aliasing errors. 

noise ratio in our computer filtering, we chose the window size, h, and the sampling 
distances so that an integral number of periods of 1 (x) lay inside the window, and the 
lattice constant of 1 (x) was chosen to  be an integral multiple of the lattice constant of 
q (x). With this choice, the spatial frequencies needed for the reconstruction fall exactly 
on Fourier space sample points and consequently contribute to  one and only one sample 

The important difference between the continuous and discrete transforms is, there- 

In order t o  avoid artifacts arising from aliasing errors and to optimize the signal-to- 
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point. The “mask” then selects just these transform points, and the inversion formula 
simply calculates averages of the periodically related real space points. This averaging 
process is just the computer equivalent of the Markham superposition. Aliasing still 
occurs, of course but the effect of it is t o  alias periodically related frequencies with each 
other. Nonperiodic information does not contribute to  these frequencies and so no arte- 
facts of  this type can arise. 

To summarize briefly: provided we are careful to  choose a sampling raster and 
window size according t o  the rules given above, the analogue and computer filtering 
operations differ only in the effective hole size of the filter. In the computer case the 
hole size is effectively zero and the filtering is equivalent to  a Markham superposition. In 
the analogue case the hole size is finite and the filtering is then equivalent t o  a Markham 
superposition but with different weights for each unit cell averaged. 

THE BILINEAR INTERPOLATION SCHEME 

In the solution of computational problems it is often necessary to  have an estimate 
of  a measurable quantity at a point at which no measurement has been made. In these 

cases an interpolation scheme is usually used t o  provide an estimate of the quantity at 
this new point. Generally speaking there are three criteria which are applied when chosing 
an interpolation scheme: 1 .  The interpolation scheme should be based on a model for 
the variation of the measured data in the absence of noise. 2 .  Given a particular (appro- 
priate) interpolation scheme and interpolation geometry, noise in the measurements should 
not be amplified when the estimates are calculated. 3. The correlation radius of the 
possible noise contributions should remain unaltered or a t  least changes in it should not 
alter the results. 

Unfortunately, in our case no precise mathematical model can be constructed for 
the raw data produced by the densitometer and so we have no way to  satisfy the first of 
these conditions. In spite of this we d o  expect a smooth variation in data collected at 
points separated by a small distance in relation to  the smallest significant resolution 
distance we expect to  see on a micrograph. Furthermore, the purpose of our interpolation 
was to  alter the positions of sample points rather than their number. Consequently pre- 

P 0 2  
P 

01 

y!&oq 

q = Y (xp 1 +(I- X)P*)+(l-Y) (xp3+(1-x)p 4 ) 

x : fraction of distance between x 

y : fraction of distance between y 
sample points 

sample points 

Fig. A l .  The bilinear interpolation scheme. 
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A 2.1 A 2.2 

Fig. A2. (1) Fraction of the amplitude of a diffraction spot in x direction transmitted by the b i k m  
interpolation. (2) Spreading of the amplitude of a diffraction spot due to the bilinear interpolation. 

A 3.1 A 3.2 

Fig. A3. Autocorrelation functions (1) of computer generated random numbers, (2) of interpolated 
computer generated random numbers. 

A 4.1 A 4.2 

Fig. A4. Autocorrelation functions ( 1 )  of noise from the single layer in Fig. 3aB. (2) Of noise from 
the planar layer in Fig. 8aA. 

cautions t o  preserve the continuity of derivatives a t  the measured points were unnecessary 
and a bilinear interpolation scheme (see Fig. A l )  was chosen for its simplicity and speed. 

As the data we used was eventually resolved into its Fourier components a test of  
the information transferring capability of the interpolation scheme was t o  lineraly inter- 
polate ideal data for various spatial frequencies from a skew system into a square system and 
t o  see how this was degraded. Results are given in Fig. A2.1, where we have graphed the 
fraction of the amplitude of various spatial frequencies transmitted by this interpolation 
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scheme, and in Fig. A2.2 where we show how one spatial frequency’s amplitude was 
spread into other spatial frequencies. These results depend upon the geometry of the skew 
system of course. In our case we looked at 100 X 100 arrays with the Y axis skewed by an 
angle of + 1.18” from 90”. Such results indicate that when the errors due t o  the spreading 
of the spatial frequencies are likely t o  be small an amplitude transmission filter can be 
constructed t o  compensate for the power loss in the high-frequency terms. Such a filter 
is expensive t o  construct and we did not feel that its use would be justified in our case. 

was done by  interpolating random noise and inspecting the result using the same geometry 
as used above. The result was an apparent reduction in the RMS value of the noise by a 
factor of roughly 0.7. This is t o  be expected as clearly the interpolated value, i ,  must be 
smaller than the largest value, dmax, in the surrounding square (see Fig. A l ) ;  that is, 

The second point t o  be checked is that noise is not amplified by interpolation. This 

min dmax > i > d 

The last point concerning the correlation radius of the noise was tested using com- 
puter-generated random numbers once again. Autocorrelation functions of  the noise and 
the interpolated noise can be seen in Fig. A3.1 and A3.2. It is clear that the effect of the 
interpolation has been t o  increase the correlation radius of the noise. From the equation 
given in Fig. A1 it is clear that the maximum increase in the correlation radius is 1 unit, 
and this is the result we do in fact obtain. For comparison (Fig. A4.1 and A4.2) we include 
autocorrelations of the noise obtained from the cylinder and planar pictures (Fig. 3a and 
8a). In this case “noise” was defined as anything not falling inside the filter holes. An in- 
crease in either of these two correlation radii by 1 unit is unlikely to  seriously distort 
the results. 
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